Changes, Challenges and Case studies in the fronthaul network for C-RANs

Philippe Chanclou – Orange Labs Networks
Sebastien Randazzo – Orange DTRS/DIRM
RAN world 2015
Session : working group “Fronthaul – Backhaul working group”
29th September, 2015, Cologne, Germany
Contents

1. C-RAN and fronthaul trials context

2. Optical fronthaul trials

3. Wireless fronthaul trials

4. Conclusions
Different C-RAN architectures

- Wide C-RAN
 - Macrocells + Hetnets

- Private and Local C-RAN
 - Micro or small cells
 - Outdoor: Local C-RAN
 - Indoor: Private C-RAN
C-RAN drivers

- Interest coming from network operational teams: **site engineering solution** due to increased network rollout difficulties
- **Antenna site simplification:** footprint reduction, renting cost reduction, reduced time to install
- Contribute to RAN strategies on tower sharing
- **Better radio performances:** thanks to very low latency between BBUs:
 - Better performance in mobility
 - Improved uplink coverage
 - Higher capacity and improved cell edge performance with inter-site CoMP
- **BBU pooling and aggregation gains** possible across a number of sites
- **Energy efficiency**
- **Future proof** for LTE-A and beyond
- In case of **hetnets:** **improved interference control**
- BBUs are in a secured location: **no need for IPSec**

Drivers = cost reductions & ease of deployment
Fronthaul trials drivers

- Save or built new sites which are identified by operational teams, as problematic in regular process (Distributed RAN with backhaul)
- Be compatible for a full site fronthaul swap: 2G, 3G and 4G (for all carriers) and 5G tomorrow
- Identify OPEX and CAPEX savings with existing Radio Access Technology equipment (2G, 3G, 4G)
- Initialize the learning curve of fronthaul network segment production: technologic choice, vendors pre-selection, installation process, Information System description, integration in the Operation Support System
- Measurements of Energy consumption
- Measurements, in a second step, of Data traffic impact (CoMP release)

Drivers = co-construction with operational teams
Fronthaul: a new segment that comes with Centralised Radio Access Network

Fronthaul interfaces: CPRI, OBSAI, ORI

Fronthaul media:
- Optical Fiber: Single Mode Fiber with or without color flavors
- Wireless: several RF bands possible with or without spectral efficiency
Contents

1. C-RAN and fronthaul trials context

2. Optical fronthaul trials

3. Wireless fronthaul trials

4. Conclusions
Optical fronthaul (CPRI)

Passive

Active & Semi Active

Fiber-rich network

One/two fibers per CPRI link

Fiber-rich network to shared fiber

CWDM up to 18 channels

18 x up to 12 Gb/s (CPRI) = Max. 219 Gbit/s

Semi Active: transponder

Passive CWDM

Active: Transponder or Muxponder

Colorised

Two fibers and SFW SFP up to 36 CPRI

36 x up to 12 Gb/s (CPRI) = Max. 438 Gbit/s
Optical fronthaul (CPRI)

- Passive
 - Fiber-rich network
 - Solution selected for Micro site trials (one sector & several mobile carriers/generation)

- Active & Semi Active
 - Solution selected for Macro site trials (several sectors (typ. 3) & several carriers/generation)

- One/two fibers per CPRI link
- Shared fiber
What is a passive optical fronthaul solution?

- FTTA & PTTA hybrid cable
- Low foot print cabinet
 Energy and passive fiber
- Passive CWDM MUX & DeMUX

BBU Hotel
Data center area
for a cells cluster

Backhaul

Hardware sharing

BBU hotel
- BBU 2G
- BBU 3G
- BBU 4G

Interface fronthaul
Interface backhaul

optical fiber
Radio configuration vs. fronthaul configuration

- **Micro** sites configuration (one sector)
 - 2G: 900 & 1800 MHz
 - 3G: 2100 & 900 MHz
 - 4G: 2600, 800, 1800 MHz
 - Total: maximum 7 CPRIs
 - Mux/DeMUX: 8 wavelength channels with two fibers
 - SFP: CWDM outdoor compatible CPRI3 (ready to CPRI5), two fibers

- **Macro** site configuration (three sectors or more)
 - three times more CPRI links:
 - Total: 21 CPRI links and 3 more with coming 700MHz
 - Mux/DeMUX: 16 wavelength channels with two fibers
 - SFP: CWDM outdoor compatible CPRI3 (ready also to CPRI5), single fiber working (SFW)
 - SFP SFW allows to support 32 links with 16 CWDM channel pairs
Contents

1. C-RAN and fronthaul trials context

2. Optical fronthaul trials

3. Wireless fronthaul trials

4. Conclusions
Wireless fronthaul (CPRI)

Native wireless

With spectral efficiency

From Small cell or 4th sector

to Macro cell

With wireless fronthaul, turn existing macro site into local C-RAN
Easier and faster deployment, same network architecture, better radio performance
Wireless fronthaul (CPRI)

Native wireless

2.5 Gbps CPRI in 500Mhz

1 LTE CPRI
1 x 2.5 Gb/s

mmwave (E-BAND)

Solution selected for trials (Mature solutions)

Other country than France should have better business case for wireless fronthaul
Wireless fronthaul: on Orange France network

Wireless fronthaul on Orange commercial network with FrontLink™ solution from E3Link

Three sectors LTE 2600 MIMO 2x2 → 3x2.457Gbit/s CPRI on a wireless fronthaul link

→ In less than 70 MHz bandwidth
Some use cases of wireless fronthaul

Use Case:
Optimized coverage with a macro sector

Use Case:
Improved coverage in VIP zones / Indoors
Macro, Micro or Repetear

Use Case:
Improved coverage in VIP zones / Indoors
Conclusions and next steps (1/2)

| C-RAN drivers and global perspective | - Radio Site engineering solution & hardware sharing
- Radio performance improvements and future proof for LTE-A
- Hybrid Fronthaul/Backhaul solution needed to address **HetNets**
- C-RAN to co-exist with regular RAN architecture |
| --- | --- |
| Wireless Fronthaul | - Wireless fronthaul **commercially available today** for network densification and **local C-RAN**
- Use of millimetric bands in future for **massive small cells** |
| Fiber Fronthaul | - **CWDM ready**: simple, passive, cost effective and future proof
- **CWDM single fiber working**: increase fiber sharing and operational simplification
- **Transponder** if wavelength management is an issue
- Supervision and OAM of fronthaul by RAN |
| Fronthaul | - RAN OSS to support fronthaul link (Fiber and wireless) |
| CPRI redefinition if needed | - CPRI transport: include natively the OAM of the medium
- New functional split interface to reduce bandwidth?
- Reference configuration including demarcation point
- Sleep mode for energy efficiency?
- Packetized fronthaul?
- Why not Radio over Ethernet but do we want to include active transport equipment inside the RAN BBU-RRH links? |
Conclusions and next steps (2/2)

New functional split

- Multi-criteria issue
- One split per RAN vendors?
- No consensus between RAN vendors and SDO
- The existing CPRI is slightly vendor dependent but constant transport requirement

Architectures

- New functional splits could introduce several transport networks architectures
- Re-used existing backhaul equipment (switch, router,…) is not obvious
- Several QoS need to be manage
- Operators needs a simple and single (compatible with all RAN vendors) fronthaul architecture
Acknowledgements:

Trugarez
Thank you
Merci
Danke
Grazie
Tack
谢谢
감사합니다
ありがとうございます