Fronthaul requirements of 5G mobile networks

Thomas Deiß, Bertold Dickhaus
thomas.deiss@nokia.com, bertold.dickhaus@nokia.com
EUCNC 2016
Overview

1. 5G end user requirements
2. 5G RAN functional splits
3. Radio feature impact
4. Flexible Scheduling Framework
5. Flexible HARQ
6. Flexible HARQ and TTI
7. Impact of small TTI on network topologies and virtualization
8. Summary
5G Requirements

- 5G mobile networks will offer disruptive network and service capabilities
- Use cases envisioned by 5G PPP, NGMN and Metis envision disruptive end user SLAs
 - e2e Delay: <= 1ms for e.g. industrial automation
 - end user datarate: >= 1Gbps e.g. for virtual reality office
- However, not all requirements have to be satisfied simultaneously
- SDN and NFV will enable fast deployment of new services and flexible allocation of physical resources
- The radio access network is particularly challenging for NFV/SDN due to its stringent real-time requirements
- New splits of the radio stack enable more flexible deployment of functions in the physical radio access networks

Source: 5GPPP 5G Vision document
Fronthaul Requirements and 5G RAN Functional Splits

- Initiatives around new Fronthaul interface(s) include NGFI, …, and …
- 5G should be deployable regardless of the fronthaul technology, latency or capacity

- Many functional splits are possible – resulting in different requirements for the fronthaul
Radio Feature Impact

- Beside end user service requirements, radio and radio coordination features have significant impact on the fronthaul.
- 5G will tighten radio parameters compared to LTE-A to shorten system delay and increase throughput.
- LTE and LTE-Advanced introduced coordination features.
- For virtualization, these features need to work with significant increased latencies, delay variations and packet drop rates.
 - Internal interfaces become external interfaces.

<table>
<thead>
<tr>
<th>Issue</th>
<th>LTE-A</th>
<th>5G</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTI</td>
<td>1ms</td>
<td>0.2ms</td>
</tr>
<tr>
<td>HARQ</td>
<td></td>
<td>limiting TTI</td>
</tr>
<tr>
<td>RTT</td>
<td>tens of ms</td>
<td>1ms</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Issue</th>
<th>Bandwidth</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIMO</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Carrier aggr.</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>(e)ICIC</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>CoMP (dep. on scheme)</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Flexible scheduling framework

• TTI as small as 0.2ms proposed for low latency 5G-users
 - Small TTIs may decrease coding gains
 - Small TTIs increase resource usage of scheduler (more scheduling decisions) and control channels (more grants)
 - mobile broadband would benefit from longer TTI

• 3GPP investigate different TTIs per bearer
 - no decision by 3GPP yet

• ➡ stringent RTT requirements for a part of the traffic only
Flexible HARQ

- LTE has rigid HARQ scheme
 - Number of HARQ processes, timing of ACK/NACK
- 5G might have different TTIs per bearer and even for UL/DL
- Adapt HARQ configuration to air interface
 - TTI configuration, latency, ...
- Allow different HARQ schemes
 - E.g. retransmission until ACK received, ...
- HARQ impact on latency is limited to a part of the traffic
- No decision by 3GPP yet
Flexible HARQ and TTI

• If such flexibility will be designed into the system, some use cases will not require stringent latency requirements,
 - Low latency application: 1ms RTT, 0.5ms latency
 - Mobile broadband: 8ms RTT, 4ms latency
 - Latency measured among 5G PDCP of UE and BTS, 3GPP 38.931
• only a small part of the traffic requires this low latency
• some part of the traffic can be prioritized over other parts
 • ➔ fronthaul equipment has to support prioritization
 • ➔ remaining traffic has to cope with increased jitter or even congestion
Impact of small TTI on virtualization and network topology

- BBU – RRH communication
 - BBUs and RRHs synchronize on TTIs and compute within a TTI
 - Real time computing at a time-granularity of one TTI
 - Timers have to be more accurate, e.g. as accurate as 0.05*T Ti
 - 10us accuracy for 0.2ms TTI
 - No problem with rtOS on dedicated hardware, but difficult for virtualization

- Inter BBU communication bound to one or a few TTIs
 - physical mesh topology among BBUs may be needed
Summary

• Still a lot of discussion ongoing, 5G radio not defined yet
• 5G requirements will be more stringent than 4G
 - Flexible solutions discussed in 3GPP to require stringent latency only where needed
• Be aware of impact on network topology and implementation technologies