5G-Crosshaul Control and Data planes

EUCNC’16, W04a: Workshop on Next generation fronthaul/backhaul integrated transport networks
Thomas Deiß, Nokia
thomas.deiss@nokia.com

5G-Crosshaul Architecture

Data plane / XCF requirements

- Multiple functional traffic: ranging from 2.5G fronthaul traffic to backhaul traffic
- Isolate traffic: one tenant shall not impact the QoS of the traffic of other tenants
- Separate traffic: one tenant shall not be able to listen to traffic of another tenant
- Differentiation: traffic of different tenants may be forwarded differently
- Forwarding: either statistical multiplexing vs. among traffic of different tenants
- Tenant ID: identify traffic of different tenants
- Ethernet: compatibility with legacy Ethernet
- Security: encryption or authentication for frames
- Compatible: carry synchronization information with gTPP

Data plane / XCF

- Possible alternatives: MAC-in-MAC, MPLS-TP
- MAC-in-MAC: Separation of address spaces
- VID (and optionally I-SID) to distinguish tenants
- PCP (3bit)
- UCA (1bit) to mark OAM packets

5G-Crosshaul Forwarding Element XFE

- Multi-layered switch
- Packet forwarding: XPFE
- Circuit switching: XCSE
- Layers are optional
- Packet layer uses common frame (XCF)

Overview

- 5G Crosshaul control and data plane
- Data plane / XCF
- Control plane / XCI design
- Summary and outlook
Data plane / Quality of Service

<table>
<thead>
<tr>
<th>PFC</th>
<th>Traffic class</th>
<th>service class/pri</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>RoE, CPRI-like</td>
<td>Ideal</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Control (sync, network control, PFI radio control, BH radio control)</td>
<td>IDEAL/GBR</td>
<td>PRESCRIPTION</td>
</tr>
<tr>
<td>5</td>
<td>PFI data</td>
<td>IDEAL/GBR</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BH GBR</td>
<td>IDEAL/GBR</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BH nGBR</td>
<td>IDEAL/GBR</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BH nGBR best effort</td>
<td>IDEAL/GBR</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BH nGBR premium</td>
<td>IDEAL/GBR</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BH nGBR premium, mission critical</td>
<td>IDEAL/GBR</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BH nGBR best effort, mission critical</td>
<td>IDEAL/GBR</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BH nGBR premium, mission critical</td>
<td>IDEAL/GBR</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BH nGBR best effort, mission critical</td>
<td>IDEAL/GBR</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BH nGBR premium, mission critical</td>
<td>IDEAL/GBR</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BH nGBR best effort, mission critical</td>
<td>IDEAL/GBR</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BH nGBR premium, mission critical</td>
<td>IDEAL/GBR</td>
<td></td>
</tr>
</tbody>
</table>

Control plane / XCI Architecture

- MANO
- SDN controller
- XPU controller

Control plane / XCI details

- VIMaP
 - map physical topology to virtual topology
 - configure network slice on demand
- SDN controller provides abstraction of network
 - Network applications/network service control layer
 - Network core services/infrastructure control layer
 - Abstraction layer to hide physical layer details
- Multi-domain capability
 - Controller hierarchy to hide details of technological or administrative domains
 - Plugins to hide details of technological domains

Summary

- Overview of data and control plane
- Selected aspects shown
 - XCF and how to provide QoS for different traffic types
 - XCI design, multi-domain capability
- Outlook: applications at NBI of XCI
 - Further presentations by Xi Li and Thomas Deiß

Acknowledgements

- The author of this paper has been sponsored in part by the project H2020-ICT-2014-2 “5G-Crosshaul”: The 5G Integrated fronthaul/backhaul” (671598)
- The author of this paper would like to thank all the partners in WP3 of 5G-Crosshaul